Module 7: Stochastic Signal Processing and Quantization
Module Overview:

- Module 7.1: Stochastic signals
- Module 7.2: Quantization
- Module 7.2: A/D and D/A conversion
Module 7.1: Stochastic signal processing
Overview:

- A simple random signal
 - Power spectral density
 - Filtering a stochastic signal
 - Noise
Overview:

- A simple random signal
- Power spectral density
 - Filtering a stochastic signal
 - Noise
Overview:

- A simple random signal
- Power spectral density
- Filtering a stochastic signal
- Noise
Overview:

- A simple random signal
- Power spectral density
- Filtering a stochastic signal
- Noise
Deterministic vs. stochastic

- Deterministic signals are known in advance: \(x[n] = \sin(0.2 \cdot n) \)
- Interesting signals are _not_ known in advance: \(s[n] = \text{what I'm going to say next} \)
- We usually know something, though: \(s[n] \) is a speech signal
- Stochastic signals can be described probabilistically
- Can we do signal processing with random signals? Yes!
- Will not develop stochastic signal processing rigorously but give enough intuition to deal with things such as “noise”
Deterministic vs. stochastic

- Deterministic signals are known in advance: \(x[n] = \sin(0.2n) \)
- Interesting signals are not known in advance: \(s[n] = \text{what I’m going to say next} \)
- We usually know something, though: \(s[n] \) is a speech signal
- Stochastic signals can be described probabilistically
- Can we do signal processing with random signals? Yes!
- Will not develop stochastic signal processing rigorously but give enough intuition to deal with things such as “noise”
Deterministic vs. stochastic

- Deterministic signals are known in advance: \(x[n] = \sin(0.2n) \)
- Interesting signals are *not* known in advance: \(s[n] = \text{what I'm going to say next} \)
- We usually know something, though: \(s[n] \) is a speech signal

- Stochastic signals can be described probabilistically
- Can we do signal processing with random signals? Yes!
- Will not develop stochastic signal processing rigorously but give enough intuition to deal with things such as “noise”
Deterministic vs. stochastic

- Deterministic signals are known in advance: $x[n] = \sin(0.2n)$
- Interesting signals are *not* known in advance: $s[n] = \text{what I’m going to say next}$
- We usually know something, though: $s[n]$ is a speech signal
- Stochastic signals can be described probabilistically
- Can we do signal processing with random signals? Yes!
- Will not develop stochastic signal processing rigorously but give enough intuition to deal with things such as “noise”
Deterministic vs. stochastic

- deterministic signals are known in advance: \(x[n] = \sin(0.2n) \)
- interesting signals are \textit{not} known in advance: \(s[n] = \text{what I’m going to say next} \)
- we usually know something, though: \(s[n] \) is a speech signal
- stochastic signals can be described probabilistically
- can we do signal processing with random signals? Yes!

will not develop stochastic signal processing rigorously but give enough intuition to deal with things such as “noise”
Deterministic vs. stochastic

- deterministic signals are known in advance: $x[n] = \sin(0.2n)$
- interesting signals are not known in advance: $s[n] = \text{what I'm going to say next}$
- we usually know something, though: $s[n]$ is a speech signal
- stochastic signals can be described probabilistically
- can we do signal processing with random signals? Yes!
- will not develop stochastic signal processing rigorously but give enough intuition to deal with things such as “noise”
A simple discrete-time random signal generator

For each new sample, toss a fair coin:

\[x[n] = \begin{cases}
+1 & \text{if the outcome of the } n\text{-th toss is head} \\
-1 & \text{if the outcome of the } n\text{-th toss is tail}
\end{cases} \]

- each sample is independent from all others
- each sample value has a 50% probability
A simple discrete-time random signal generator

For each new sample, toss a fair coin:

\[
x[n] = \begin{cases}
+1 & \text{if the outcome of the } n \text{-th toss is head} \\
-1 & \text{if the outcome of the } n \text{-th toss is tail}
\end{cases}
\]

- each sample is independent from all others
- each sample value has a 50% probability
A simple discrete-time random signal generator

- every time we turn on the generator we obtain a different realization of the signal
- we know the "mechanism" behind each instance
- but how can we analyze a random signal?
A simple discrete-time random signal generator

- every time we turn on the generator we obtain a different realization of the signal
- we know the “mechanism” behind each instance
- but how can we analyze a random signal?
A simple discrete-time random signal generator

- every time we turn on the generator we obtain a different \textit{realization} of the signal
- we know the “mechanism” behind each instance
- but how can we analyze a random signal?
A simple discrete-time random signal generator

- every time we turn on the generator we obtain a different realization of the signal
- we know the “mechanism” behind each instance
- but how can we analyze a random signal?
A simple discrete-time random signal generator

- every time we turn on the generator we obtain a different realization of the signal
- we know the “mechanism” behind each instance
- but how can we analyze a random signal?
Spectral properties?

- let’s try with the DFT of a finite set of random samples
 - every time it’s different; maybe with more data?
 - no clear pattern... we need a new strategy
Spectral properties?

- let’s try with the DFT of a finite set of random samples
 - every time it’s different; maybe with more data?
 - no clear pattern... we need a new strategy
Spectral properties?

- let’s try with the DFT of a finite set of random samples
 - every time it’s different; maybe with more data?
 - no clear pattern... we need a new strategy
Spectral properties?

- let’s try with the DFT of a finite set of random samples
- every time it’s different; maybe with more data?
- no clear pattern... we need a new strategy
Spectral properties?

- let’s try with the DFT of a finite set of random samples
- every time it’s different; maybe with more data?
- no clear pattern... we need a new strategy
Spectral properties?

- let’s try with the DFT of a finite set of random samples
- every time it’s different; maybe with more data?
- no clear pattern... we need a new strategy
when faced with random data an intuitive response is to take “averages”

in probability theory the average is across realizations and it’s called expectation

for the coin-toss signal:

\[
E[x[n]] = -1 \cdot P[\text{n-th toss is tail}] + 1 \cdot P[\text{n-th toss is head}] = 0
\]

so the average value for each sample is zero...
Averaging

- when faced with random data an intuitive response is to take “averages”
- in probability theory the average is across realizations and it’s called expectation
 - for the coin-toss signal:
 \[E[x[n]] = -1 \cdot P[\text{n-th toss is tail}] + 1 \cdot P[\text{n-th toss is head}] = 0 \]
 - so the average value for each sample is zero...
Averaging

- when faced with random data an intuitive response is to take “averages”
- in probability theory the average is across realizations and it’s called expectation
- for the coin-toss signal:

\[E[x[n]] = -1 \cdot P[\text{n-th toss is tail}] + 1 \cdot P[\text{n-th toss is head}] = 0 \]

- so the average value for each sample is zero...
when faced with random data an intuitive response is to take “averages”

in probability theory the average is across realizations and it’s called expectation

for the coin-toss signal:

\[E[x[n]] = -1 \cdot P[\text{n-th toss is tail}] + 1 \cdot P[\text{n-th toss is head}] = 0 \]

so the average value for each sample is zero...
Averaging the DFT

- ... as a consequence, averaging the DFT will not work
 - $E[X[k]] = 0$
 - however the signal “moves”, so its energy or power must be nonzero
Averaging the DFT

- As a consequence, averaging the DFT will not work.
- \(E[X[k]] = 0 \)
- However, the signal “moves”, so its energy or power must be nonzero.
... as a consequence, averaging the DFT will not work

$E[X[k]] = 0$

however the signal “moves”, so its energy or power must be nonzero
Energy and power

- the coin-toss signal has infinite energy (see Module 2.1):

\[
E_x = \lim_{N \to \infty} \sum_{n=-N}^{N} |x[n]|^2 = \lim_{N \to \infty} (2N + 1) = \infty
\]

- however it has finite power over any interval:

\[
P_x = \lim_{N \to \infty} \frac{1}{2N + 1} \sum_{n=-N}^{N} |x[n]|^2 = 1
\]
let’s try to average the DFT’s square magnitude, normalized:

- pick an interval length N
- pick a number of iterations M
- run the signal generator M times and obtain M N-point realizations
- compute the DFT of each realization
- average their square magnitude divided by N
let’s try to average the DFT’s square magnitude, normalized:

- pick an interval length \(N \)
- pick a number of iterations \(M \)
 - run the signal generator \(M \) times and obtain \(M N \)-point realizations
 - compute the DFT of each realization
 - average their square magnitude divided by \(N \)
let's try to average the DFT’s square magnitude, normalized:

- pick an interval length \(N\)
- pick a number of iterations \(M\)
- run the signal generator \(M\) times and obtain \(M\ N\)-point realizations
- compute the DFT of each realization
- average their square magnitude divided by \(N\)
let’s try to average the DFT’s square magnitude, normalized:
 ▶ pick an interval length N
 ▶ pick a number of iterations M
 ▶ run the signal generator M times and obtain $M \cdot N$-point realizations
 ▶ compute the DFT of each realization
 ▶ average their square magnitude divided by N
let’s try to average the DFT’s square magnitude, normalized:

- pick an interval length N
- pick a number of iterations M
- run the signal generator M times and obtain $M \cdot N$-point realizations
- compute the DFT of each realization
- average their square magnitude divided by N
Averaged DFT square magnitude

\[M = 1 \]
Averaged DFT square magnitude

\[M = 10 \]
Averaged DFT square magnitude

![Graph showing the averaged DFT square magnitude with $M = 1000$.](image)
Averaged DFT square magnitude

\[M = 5000 \]
Power spectral density

\[P[k] = E\left[\left|X_N[k]\right|^2/N\right] \]

- it looks very much as if \(P[k] = 1 \)
- if \(|X_N[k]|^2 \) tends to the energy distribution in frequency...
- \(...|X_N[k]|^2/N \) tends to the power distribution (aka density) in frequency
- the frequency-domain representation for stochastic processes is the power spectral density
Power spectral density

\[P[k] = E \left[|X_N[k]|^2 / N \right] \]

- it looks very much as if \(P[k] = 1 \)
- if \(|X_N[k]|^2 \) tends to the energy distribution in frequency...
- \(|X_N[k]|^2 / N \) tends to the power distribution (aka density) in frequency
- the frequency-domain representation for stochastic processes is the power spectral density
Power spectral density

\[P[k] = E \left[|X_N[k]|^2 / N \right] \]

- it looks very much as if \(P[k] = 1 \)
- if \(|X_N[k]|^2 \) tends to the energy distribution in frequency...
- ...\(|X_N[k]|^2 / N \) tends to the power distribution (aka density) in frequency
- the frequency-domain representation for stochastic processes is the power spectral density
Power spectral density

\[P[k] = E \left[|X_N[k]|^2 / N \right] \]

- it looks very much as if \(P[k] = 1 \)
- if \(|X_N[k]|^2 \) tends to the energy distribution in frequency...
- \(...|X_N[k]|^2 / N \) tends to the power distribution (aka density) in frequency
- the frequency-domain representation for stochastic processes is the power spectral density
Power spectral density: intuition

- $P[k] = 1$ means that the power is equally distributed over all frequencies.
- i.e., we cannot predict if the signal moves “slowly” or “super-fast”;
- this is because each sample is independent of each other: we could have a realization of all ones or a realization in which the sign changes every other sample or anything in between.
Power spectral density: intuition

- $P[k] = 1$ means that the power is equally distributed over all frequencies.
- i.e., we cannot predict if the signal moves “slowly” or “super-fast”.
- this is because each sample is independent of each other: we could have a realization of all ones or a realization in which the sign changes every other sample or anything in between.
Power spectral density: intuition

- $P[k] = 1$ means that the power is equally distributed over all frequencies
- i.e., we cannot predict if the signal moves “slowly” or “super-fast”
- this is because each sample is independent of each other: we could have a realization of all ones or a realization in which the sign changes every other sample or anything in between
Filtering a random process

- Let’s filter the random process with a 2-point Moving Average filter
 \[y[n] = \frac{x[n] + x[n-1]}{2} \]
- What is the power spectral density?
Filtering a random process

- let’s filter the random process with a 2-point Moving Average filter
- \[y[n] = (x[n] + x[n - 1])/2 \]
- what is the power spectral density?
Filtering a random process

- let’s filter the random process with a 2-point Moving Average filter
 \[y[n] = \frac{x[n] + x[n - 1]}{2} \]
- what is the power spectral density?
Averaged DFT magnitude of filtered process

\[M = 1 \]
Averaged DFT magnitude of filtered process

\[M = 10 \]
Averaged DFT magnitude of filtered process

\[M = 5000 \]
Averaged DFT magnitude of filtered process

\[\left| \frac{1 + e^{j(2\pi/N)k}}{2} \right|^2 \]

\(M = 5000 \)
Filtering a random process

- it looks like \(P_y[k] = P_x[k] |H[k]|^2 \), where \(H[k] = \text{DFT} \{h[n]\} \)

- can we generalize these results beyond a finite set of samples?
Filtering a random process

- it looks like $P_y[k] = P_x[k]|H[k]|^2$, where $H[k] = \text{DFT}\{h[n]\}$

- can we generalize these results beyond a finite set of samples?
Stochastic signal processing

- a stochastic process is characterized by its power spectral density (PSD)
- it can be shown (see the textbook) that the PSD is

\[P_x(e^{j\omega}) = \text{DTFT}\{r_x[n]\} \]

where \(r_x[n] = \mathbb{E}[x[k]x[n-k]] \) is the autocorrelation of the process.
- for a filtered stochastic process \(y[n] = H\{x[n]\} \), it is:

\[P_y(e^{j\omega}) = |H(e^{j\omega})|^2 P_x(e^{j\omega}) \]
a stochastic process is characterized by its power spectral density (PSD)

it can be shown (see the textbook) that the PSD is

$$P_x(e^{j\omega}) = \text{DTFT} \{ r_x[n] \}$$

where $r_x[n] = E [x[k] x[n + k]]$ is the autocorrelation of the process.

for a filtered stochastic process $y[n] = H\{x[n]\}$, it is:

$$P_y(e^{j\omega}) = |H(e^{j\omega})|^2 P_x(e^{j\omega})$$
- A stochastic process is characterized by its power spectral density (PSD).
- It can be shown (see the textbook) that the PSD is
 \[P_x(e^{j\omega}) = \text{DTFT}\{r_x[n]\} \]
 where \(r_x[n] = \mathbb{E}[x[k]x[n+k]] \) is the autocorrelation of the process.
- For a filtered stochastic process \(y[n] = \mathcal{H}\{x[n]\} \), it is:
 \[P_y(e^{j\omega}) = |H(e^{j\omega})|^2 P_x(e^{j\omega}) \]
Stochastic signal processing

key points:

- filters designed for deterministic signals still work (in magnitude) in the stochastic case
- we lose the concept of phase since we don’t know the shape of a realization in advance
Stochastic signal processing

key points:

- filters designed for deterministic signals still work (in magnitude) in the stochastic case
- we lose the concept of phase since we don’t know the shape of a realization in advance
Noise

- noise is everywhere:
 - thermal noise
 - sum of extraneous interferences
 - quantization and numerical errors
 - ...

- we can model noise as a stochastic signal

- the most important noise is white noise
Noise

noise is everywhere:
- thermal noise
 - sum of extraneous interferences
 - quantization and numerical errors
 - ...
- we can model noise as a stochastic signal
- the most important noise is white noise
noise is everywhere:
 - thermal noise
 - sum of extraneous interferences
 - quantization and numerical errors
 - ...

we can model noise as a stochastic signal

the most important noise is white noise
Noise

- noise is everywhere:
 - thermal noise
 - sum of extraneous interferences
 - quantization and numerical errors
 - ...

- we can model noise as a stochastic signal
- the most important noise is white noise
noise is everywhere:
- thermal noise
- sum of extraneous interferences
- quantization and numerical errors
- ...

we can model noise as a stochastic signal

the most important noise is white noise
Noise

- noise is everywhere:
 - thermal noise
 - sum of extraneous interferences
 - quantization and numerical errors
 - ...

- we can model noise as a stochastic signal

- the most important noise is white noise
Noise

- noise is everywhere:
 - thermal noise
 - sum of extraneous interferences
 - quantization and numerical errors
 - ...

- we can model noise as a stochastic signal

- the most important noise is white noise
White noise

- “white” indicates uncorrelated samples

- \(r_w[n] = \sigma^2 \delta[n] \)

- \(P_w(e^{j\omega}) = \sigma^2 \)
White noise

- “white” indicates uncorrelated samples
- $r_w[n] = \sigma^2 \delta[n]$
- $P_w(e^{j\omega}) = \sigma^2$
White noise

- “white” indicates uncorrelated samples
- \(r_w[n] = \sigma^2 \delta[n] \)
- \(P_w(e^{j\omega}) = \sigma^2 \)
White noise

\[P_w(e^{j\omega}) = \sigma^2 \]

\(-\pi \)
\(-\pi/2 \)
\(0 \)
\(\pi/2 \)
\(\pi \)
White noise

- the PSD is independent of the probability distribution of the single samples (depends only on the variance)
- distribution is important to estimate bounds for the signal
- very often a Gaussian distribution models the experimental data the best
- AWGN: additive white Gaussian noise
White noise

- the PSD is independent of the probability distribution of the single samples (depends only on the variance)
- distribution is important to estimate bounds for the signal
- very often a Gaussian distribution models the experimental data the best
- AWGN: additive white Gaussian noise
White noise

- the PSD is independent of the probability distribution of the single samples (depends only on the variance)
- distribution is important to estimate bounds for the signal
- very often a Gaussian distribution models the experimental data the best
- AWGN: additive white Gaussian noise
- the PSD is independent of the probability distribution of the single samples (depends only on the variance)
- distribution is important to estimate bounds for the signal
- very often a Gaussian distribution models the experimental data the best
- AWGN: additive white Gaussian noise
END OF MODULE 7.1
Module 7.2: Quantization
Overview:

- Quantization
 - Uniform quantization and error analysis
 - Clipping, saturation, companding
Overview:

- Quantization
- Uniform quantization and error analysis
- Clipping, saturation, companding
Overview:

- Quantization
- Uniform quantization and error analysis
- Clipping, saturation, companding
Quantization

- digital devices can only deal with integers (b bits per sample)
- we need to map the range of a signal onto a finite set of values
- irreversible loss of information → quantization noise
Quantization

- digital devices can only deal with integers (b bits per sample)
- we need to map the range of a signal onto a finite set of values
- irreversible loss of information = quantization noise
- digital devices can only deal with integers (b bits per sample)
- we need to map the range of a signal onto a finite set of values
- irreversible loss of information \rightarrow quantization noise
Quantization schemes

Several factors at play:

- storage budget (bits per sample)
- storage scheme (fixed point, floating point)
- properties of the input
 - range
 - probability distribution
Quantization schemes

Several factors at play:

- storage budget (bits per sample)
- storage scheme (fixed point, floating point)
- properties of the input
 - range
 - probability distribution
Quantization schemes

Several factors at play:

- storage budget (bits per sample)
- storage scheme (fixed point, floating point)
- properties of the input
 - range
 - probability distribution
Quantization schemes

$x[n] \rightarrow Q\{\cdot\} \rightarrow \hat{x}[n]$

Several factors at play:

- storage budget (bits per sample)
- storage scheme (fixed point, floating point)
- properties of the input
 - range
 - probability distribution
Quantization schemes

Several factors at play:

- storage budget (bits per sample)
- storage scheme (fixed point, floating point)
- properties of the input
 - range
 - probability distribution
The simplest quantizer:

- each sample is encoded individually (hence *scalar*)
- each sample is quantized independently (memoryless quantization)
- each sample is encoded using R bits
Scalar quantization

The simplest quantizer:

- each sample is encoded individually (hence *scalar*)
- each sample is quantized independently (memoryless quantization)
- each sample is encoded using R bits

\[x[n] \xrightarrow{Q\{\cdot\}} \hat{x}[n] \]
Scalar quantization

The simplest quantizer:

- each sample is encoded individually (hence *scalar*)
- each sample is quantized independently (memoryless quantization)
- each sample is encoded using R bits
Scalar quantization

Assume input signal bounded: \(A \leq x[n] \leq B \) for all \(n \):
- each sample quantized over \(2^R \) possible values \(\Rightarrow 2^R \) intervals.
- each interval associated to a quantization value
Scalar quantization

Assume input signal bounded: $A \leq x[n] \leq B$ for all n:

- each sample quantized over 2^R possible values $\Rightarrow 2^R$ intervals.

- each interval associated to a quantization value
Scalar quantization

Assume input signal bounded: $A \leq x[n] \leq B$ for all n:

- each sample quantized over 2^R possible values \Rightarrow 2^R intervals.

- each interval associated to a quantization value

![Diagram showing scalar quantization intervals with points A, \hat{x}_0, \hat{x}_1, \hat{x}_2, \hat{x}_3, and B.]
Scalar quantization

Example for $R = 2$:

- What are the optimal interval boundaries i_k?
- What are the optimal quantization values \hat{x}_k?
Scalar quantization

Example for $R = 2$:

- what are the optimal interval boundaries i_k?
- what are the optimal quantization values \hat{x}_k?
Quantization Error

\[e[n] = Q\{x[n]\} - x[n] = \hat{x}[n] - x[n] \]

- model \(x[n] \) as a stochastic process
 - model error as a white noise sequence:
 - error samples are uncorrelated
 - all error samples have the same distribution
 - we need statistics of the input to study the error
Quantization Error

\[e[n] = Q\{x[n]\} - x[n] = \hat{x}[n] - x[n] \]

- model \(x[n] \) as a stochastic process
- model error as a white noise sequence:
 - error samples are uncorrelated
 - all error samples have the same distribution
- we need statistics of the input to study the error
Quantization Error

\[e[n] = Q\{x[n]\} - x[n] = \hat{x}[n] - x[n] \]

- model \(x[n] \) as a stochastic process
- model error as a white noise sequence:
 - error samples are uncorrelated
 - all error samples have the same distribution
- we need statistics of the input to study the error
Quantization Error

\[e[n] = Q\{x[n]\} - x[n] = \hat{x}[n] - x[n] \]

- model \(x[n] \) as a stochastic process
- model error as a white noise sequence:
 - error samples are uncorrelated
 - all error samples have the same distribution
- we need statistics of the input to study the error
Quantization Error

\[e[n] = Q\{x[n]\} - x[n] = \hat{x}[n] - x[n] \]

- model \(x[n] \) as a stochastic process
- model error as a white noise sequence:
 - error samples are uncorrelated
 - all error samples have the same distribution
- we need statistics of the input to study the error
Uniform quantization

- simple but very general case
 - range is split into 2^R equal intervals of width $\Delta = (B - A)2^{-R}$
Uniform quantization

- simple but very general case
- range is split into 2^R equal intervals of width $\Delta = (B - A)2^{-R}$
Uniform quantization

- simple but very general case
- range is split into 2^R equal intervals of width $\Delta = (B - A)2^{-R}$
Uniform quantization

Mean Square Error is the variance of the error signal:

\[\sigma_e^2 = E \left[|Q\{x[n]\} - x[n]|^2 \right] \]

\[= \int_A^B f_x(\tau) (\hat{x}_k - \tau)^2 d\tau \]

error depends on the probability distribution of the input
Mean Square Error is the variance of the error signal:

\[
\sigma_e^2 = \mathbb{E} \left[|Q\{x[n]\} - x[n]|^2 \right]
\]

\[
= \int_{A}^{B} f_x(\tau) (Q\{\tau\} - \tau)^2 \, d\tau
\]

error depends on the probability distribution of the input
Mean Square Error is the variance of the error signal:

\[\sigma_e^2 = E \left[|Q[x[n]] - x[n]|^2 \right] \]

\[= \int_A^B f_x(\tau) (Q\{\tau\} - \tau)^2 \, d\tau \]

\[= \sum_{k=0}^{2^R-1} \int_{l_k} f_x(\tau) (\hat{x}_k - \tau)^2 \, d\tau \]

error depends on the probability distribution of the input.
Mean Square Error is the variance of the error signal:

\[
\sigma_e^2 = E[|Q\{x[n]\} - x[n]|^2] \\
= \int_{A}^{B} f_x(\tau)(Q\{\tau\} - \tau)^2 \, d\tau \\
= \sum_{k=0}^{2^R-1} \int_{I_k} f_x(\tau)(\hat{x}_k - \tau)^2 \, d\tau
\]

error depends on the probability distribution of the input
Uniform quantization of uniform input

Uniform-input hypothesis:

\[f_x(\tau) = \frac{1}{B-A} \]

\[\sigma_e^2 = \sum_{k=0}^{2^R-1} \int_{l_k} \left(\frac{\hat{x}_k - \tau}{B-A} \right)^2 d\tau \]
Uniform quantization of uniform input

Let’s find the optimal quantization point by minimizing the error

\[
\frac{\partial \sigma_e^2}{\partial \hat{x}_m} = \frac{\partial}{\partial \hat{x}_m} \sum_{k=0}^{2^R-1} \int_{I_k} \frac{(\hat{x}_k - \tau)^2}{B - A} d\tau
\]

\[
= \frac{2(\hat{x}_m - \tau)^2}{B - A} \bigg|_{A+m\Delta}^{A+m\Delta+\Delta}
\]
Uniform quantization of uniform input

Let’s find the optimal quantization point by minimizing the error

\[
\frac{\partial \sigma_e^2}{\partial \hat{x}_m} = \frac{\partial}{\partial \hat{x}_m} \sum_{k=0}^{2^R-1} \int_{I_k} \left(\frac{\hat{x}_k - \tau}{B - A} \right)^2 d\tau
\]

\[
= \int_{I_m} \frac{2(\hat{x}_m - \tau)}{B - A} d\tau
\]

\[
= \left. \frac{(\hat{x}_m - \tau)^2}{B - A} \right|^{A+m\Delta+\Delta}_{A+m\Delta}
\]
Uniform quantization of uniform input

Let’s find the optimal quantization point by minimizing the error

\[
\frac{\partial \sigma_e^2}{\partial \hat{x}_m} = \frac{\partial}{\partial \hat{x}_m} \sum_{k=0}^{2^R-1} \int_{l_k} \left(\frac{\hat{x}_k - \tau}{B - A} \right)^2 d\tau
= \int_{l_m} \left(\frac{2(\hat{x}_m - \tau)}{B - A} \right) d\tau
= \left. \frac{(\hat{x}_m - \tau)^2}{B - A} \right|_{A + m\Delta + \Delta}^{A + m\Delta}
\]
Minimizing the error:

$$\frac{\partial \sigma_e^2}{\partial \hat{x}_m} = 0 \quad \text{for} \quad \hat{x}_m = A + m\Delta + \frac{\Delta}{2}$$

optimal quantization point is the interval’s midpoint, for all intervals
Uniform 3-Bit quantization function

\[
\hat{x}[n] =\begin{cases}
0.25 & \text{if } x[n] \in [-0.25, 0.25) \\
0.50 & \text{if } x[n] \in [0.25, 0.50) \\
0.75 & \text{if } x[n] \in [0.50, 0.75) \\
1.00 & \text{if } x[n] \geq 0.75 \\
-0.25 & \text{if } x[n] \in (-0.25, -0.50) \\
-0.50 & \text{if } x[n] \in [-0.50, -0.75) \\
-0.75 & \text{if } x[n] \in [-0.75, -1.00) \\
-1.00 & \text{if } x[n] < -1.00
\end{cases}
\]
Quantizer’s mean square error:

\[
\sigma_e^2 = \sum_{k=0}^{2^R-1} \int_{A+k\Delta}^{A+k\Delta+\Delta} \left(\frac{A + k\Delta + \Delta/2 - \tau}{B - A} \right)^2 d\tau
\]

\[
= 2^R \left(\frac{\Delta}{B - A} \right)^2 \int_{0}^{\Delta/2} \left(\frac{\Delta/2 - \tau}{\Delta/2} \right)^2 d\tau
\]

\[
= \frac{\Delta^2}{12}
\]
Uniform quantization of uniform input

Quantizer’s mean square error:

\[
\sigma_e^2 = \sum_{k=0}^{2^R-1} \int_{A+k\Delta}^{A+k\Delta+\Delta} \frac{(A + k\Delta + \Delta/2 - \tau)^2}{B - A} d\tau
\]

\[
= 2^R \int_0^{\Delta} \frac{(\Delta/2 - \tau)^2}{B - A} d\tau
\]

\[
= \frac{\Delta^2}{12}
\]
Uniform quantization of uniform input

Quantizer’s mean square error:

\[
\sigma_e^2 = \sum_{k=0}^{2^R-1} \int_{A+k\Delta}^{A+(k+1)\Delta} \frac{(A + k\Delta + \Delta/2 - \tau)^2}{B - A} d\tau
\]

\[
= 2^R \int_{0}^{\Delta} \frac{(\Delta/2 + \tau)^2}{B - A} d\tau
\]

\[
= \frac{\Delta^2}{12}
\]
Error analysis

- error energy

\[\sigma_e^2 = \Delta^2/12, \quad \Delta = (B - A)/2^R \]

- signal energy

\[\sigma_x^2 = \frac{(B - A)^2}{12} \]

- signal to noise ratio

\[SNR = 2^{2R} \]

- in dB

\[SNR_{dB} = 10 \log_{10} 2^{2R} \approx 6R \text{ dB} \]
Error analysis

- error energy
 \[\sigma_e^2 = \Delta^2 / 12, \quad \Delta = (B - A) / 2^R \]

- signal energy
 \[\sigma_x^2 = (B - A)^2 / 12 \]

- signal to noise ratio
 \[\text{SNR}_{dB} = 10 \log_{10} 2^R \approx 6R \text{ dB} \]
Error analysis

- error energy
 \[\sigma_e^2 = \frac{\Delta^2}{12}, \quad \Delta = \frac{(B - A)}{2^R} \]

- signal energy
 \[\sigma_x^2 = \frac{(B - A)^2}{12} \]

- signal to noise ratio
 \[\text{SNR} = 2^{2^R} \]

- in dB
 \[\text{SNR}_{\text{dB}} = 10 \log_{10} 2^{2^R} \approx 6R \text{ dB} \]
Error analysis

- error energy

\[\sigma_e^2 = \frac{\Delta^2}{12}, \quad \Delta = \frac{(B - A)}{2^R} \]

- signal energy

\[\sigma_x^2 = \frac{(B - A)^2}{12} \]

- signal to noise ratio

\[\text{SNR} = 2^{2^R} \]

- in dB

\[\text{SNR}_{\text{dB}} = 10 \log_{10} 2^{2^R} \approx 6R \text{ dB} \]
The “6dB/bit” rule of thumb

- a compact disk has 16 bits/sample:
 \[\text{max SNR} = 96\text{dB} \]

- a DVD has 24 bits/sample:
 \[\text{max SNR} = 144\text{dB} \]
The “6dB/bit” rule of thumb

- A compact disk has 16 bits/sample:
 \[
 \text{max SNR} = 96\text{dB}
 \]

- A DVD has 24 bits/sample:
 \[
 \text{max SNR} = 144\text{dB}
 \]
Rate/Distortion Curve

rate (R)

distortion (σ_e^2)
Other quantization errors

If input is not bounded to \([A, B]\):

- clip samples to \([A, B]\): linear distortion (can be put to good use in guitar effects!)
- smoothly saturate input: this simulates the saturation curves of analog electronics
If input is not bounded to $[A, B]$:

- clip samples to $[A, B]$: linear distortion (can be put to good use in guitar effects!)
- smoothly saturate input: this simulates the saturation curves of analog electronics
Clipping vs saturation

- Clipping function: Saturates at 0 and 1.
- Saturation function: Smoothly reduces values outside -1 to 1.
Other quantization errors

If input is not uniform:

▶ use uniform quantizer and accept increased error.
 For instance, if input is Gaussian:

\[
\sigma_e^2 = \frac{\sqrt{3\pi}}{2} \sigma^2 \Delta^2
\]

▶ design optimal quantizer for input distribution, if known (Lloyd-Max algorithm)

▶ use "companders"
Other quantization errors

If input is not uniform:

- use uniform quantizer and accept increased error.

 For instance, if input is Gaussian:

 \[
 \sigma_e^2 = \frac{\sqrt{3\pi}}{2} \sigma^2 \Delta^2
 \]

- design optimal quantizer for input distribution, if known (Lloyd-Max algorithm)

- use “companders”
Other quantization errors

If input is not uniform:

- use uniform quantizer and accept increased error. For instance, if input is Gaussian:

 \[\sigma_e^2 = \frac{\sqrt{3\pi}}{2} \sigma^2 \Delta^2 \]

- design optimal quantizer for input distribution, if known (Lloyd-Max algorithm)

- use “companders”
\[C\{x[n]\} = \text{sgn}(x[n]) \frac{\ln(1 + \mu |x[n]|)}{\ln(1 + \mu)} \]
END OF MODULE 7.2
Overview:

- Analog-to-digital (A/D) conversion
- Digital-to-analog (D/A) conversion
Overview:

- Analog-to-digital (A/D) conversion
- Digital-to-analog (D/A) conversion
From analog to digital

- sampling discretizes time
- quantization discretized amplitude
- how is it done in practice?
From analog to digital

- sampling discretizes time
- quantization discretized amplitude
- how is it done in practice?
From analog to digital

- sampling discretizes time
- quantization discretized amplitude
- how is it done in practice?
From analog to digital
A tiny bit of electronics: the op-amp

\[v_o = G(v_p - v_n) \]
A tiny bit of electronics: the op-amp

\[v_o = G (v_p - v_n) \]
The two key properties

- infinite input gain \((G \approx \infty)\)
- zero input current
The two key properties

- infinite input gain \((G \approx \infty)\)
- zero input current
Inside the box
The op-amp in open loop: comparator

\[y = \begin{cases}
+V_{cc} & \text{if } x > V_T \\
-V_{cc} & \text{if } x < V_T
\end{cases} \]
The op-amp in open loop: comparator

\[y = \begin{cases}
+V_{cc} & \text{if } x > V_T \\
-V_{cc} & \text{if } x < V_T
\end{cases} \]
The op-amp in closed loop: buffer

\[y = x \]
The op-amp in closed loop: buffer

\[y = x \]
The op-amp in closed loop: inverting amplifier

\[y = -\frac{R_2}{R_1}x \]
The op-amp in closed loop: inverting amplifier

\[y = -(R_2/R_1)x \]
A/D Converter: Sample & Hold

\[x(t) \rightarrow T1 \rightarrow C1 \rightarrow x[n] \]

\[k(t) \rightarrow \text{Diode} \rightarrow \frac{F_s}{2} \]
A/D Converter: 2-Bit Quantizer

\[x[n] \]

\[+V_0 \]

\[+0.5V_0 \]

\[0 \]

\[-0.5V_0 \]

\[-V_0 \]

\[R \]

\[11 \]

\[10 \]

\[01 \]

\[MSB \]

\[LSB \]
D/A Converter

\[x(t) \approx V_0 \sum_{n=0}^{N-1} 2^n R \text{LSB} \]

Digital Signal Processing
Paolo Prandoni and Martin Vetterli
© 2013
END OF MODULE 7.3
END OF MODULE 7